Abstract MDP8

Blockade of CD47 using a novel anti-CD47 molecule, BRB-002, attenuates atherosclerosis in an ApoE mouse model

Rui Yun¹, Dongdong Feng¹, Caiaphas Ardoin¹, Ofelia Mata¹, Sharline Chen¹, Pierre Signore¹, Aimee Vozenilek², Aloke V. Finn², Pavan Cheruvu¹, Nicholas J. Leeper³, Craig T. Basson¹, and **B. Alexander Yi**¹

¹ Bitterroot Bio, Palo Alto, CA USA
² CVPath Institute, Inc., Gaithersburg, MD USA
³ Divisions of Vascular Surgery and Cardiovascular Medicine, Stanford University, Stanford, CA USA

Disclosures

Presenter: Alex Yi is an employee of Bitterroot Bio.

R.Y., D.F., C.A., O.M., S.C., P.S., P.C., N.J.L, C.T.B, and B.A.Y. are current or former employees and/or stockholders of Bitterroot Bio.

This research work was sponsored by Bitterroot Bio.

CD47 acts as a "don't eat me" signal to prevent programmed cell removal by phagocytes Background

- ~200 billion cells die and turnover every day in the human body as part of normal tissue homeostasis
 - Yet few apoptotic cells are found in healthy individuals suggesting that this debris is rapidly and efficiently cleared
- Programmed cell removal, or *efferocytosis*, is often carried out by macrophages in a highly regulated fashion
- For instance, the predominant "don't eat me" signal, CD47, is expressed by healthy cells

Morioka S et al. (2019) "Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology" *Immunity*. 50:1149 Cabrera JTO and Makino A (2022) "Efferocytosis of vascular cells in cardiovascular disease" *Pharmacol Ther*. 229:07919.

In atherosclerotic plaques, CD47 overexpression may impair efferocytosis and perpetuate inflammation Hypothesis

CD47 is highly expressed in advanced atherosclerotic plaque

Hypothesis: Stimulate efferocytosis by antagonizing CD47 can demonstrate efficacy in a mouse model of atherosclerosis

Chronic **CD47**

Impaired efferocytosis

Tabas I (2011) "Pulling down the plug on atherosclerosis" Nat Med. 17:791 Kojima Y et al (2016) "CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis" Nature. 536:86.

BRB-002 is an engineered recombinant protein designed to bind CD47 with high affinity

- Fc region engineered with mutations for enhanced neonatal receptor (FcRn) binding for improved molecule half-life
- Fc region designed to eliminate Fc-dependent effector functions

BRB-002 binds CD47 with high affinity

Can BRB-002 reduce plaque burden in a mouse model of established atherosclerosis? Methods and Study Design

Atherosclerotic plaque burden co-localizes with cathepsin B activity in ApoE-/- mice fed a high fat Western diet ²

i.p. intraperitoneal ¹ IVISense Cat B Fast; ² Chen J et al (2002) "In vivo imaging of proteolytic activity in atherosclerosis" *Circulation* 105:2766

Readout: Assessment of plaque burden

- aortic roots (histomorphometry)
- descending aorta (cathepsin B activity based probe¹)

BRB-002 significantly reduced plaque burden in mouse model of established atherosclerosis Results

BRB-002 demonstrated efficacy in a mouse model of atherosclerosis prevention **Experiment with subcutaneous administration**

BRB-002 demonstrated efficacy in a mouse model of atherosclerosis prevention Results

Results

• Repeated s.c. administration of BRB-002 was well-tolerated in mice

 Significant reductions in plaque burden in the descending aortas at all BRB-002 doses tested

man man man mary

Conclusions

- Repeated administration of BRB-002 in these studies was associated with stable hematologic parameters
- Antagonizing CD47 with BRB-002 demonstrated efficacy in apoE-deficient mouse model of established atherosclerosis and prevented atherogenesis in apoEdeficient mice
- Targeting CD47 has the potential to target the chronic inflammation associated with atherosclerotic lesions

Acknowledgements

The authors would like to thank members of the Bitterroot Bio research team and collaborators at the CVPath Institute and Stanford University for helpful discussions and advice.